skip to main content


Search for: All records

Creators/Authors contains: "Robinson, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lode gold deposits, which are currently the world’s major gold supply, have been shown to be generated mostly by phase separation of metamorphic fluids and/or interaction between these fluids and wall rocks. Here we use garnet oxygen isotopes by secondary ion mass spectrometry to document the crucial role of magmatic hydrothermal fluids and their mixing with meteoric water in the formation of the world-class Dongping gold deposit in the North China Craton. Garnet grains from quartz veins of various paragenetic stages and the mineralized alteration envelope at Dongping have dynamic δ 18 O variations of 3.8 to −11.0‰, with large intragrain fluctuations up to 5.3‰. These values correspond to calculated δ 18 O values of 6.1 to −9.1‰ for the hydrothermal fluids from which the garnet formed. The isotope data, notably the cyclic alternation in δ 18 O within individual garnet grains, are best interpreted to reflect multiple pulses of magmatically derived fluids and subsequent mixing of each pulse with variable amounts of meteoric water. The results presented here allow us to quantify the significant interplay between magmatic hydrothermal fluids and meteoric water that spanned the entire mineralization history and triggered gold deposition of a lode gold deposit. This study highlights the potential use of in situ oxygen isotope analysis of garnet in tracing the origin and evolution of hydrothermal fluids in the Earth’s crust that may have formed other giant ore deposits. 
    more » « less
  2. null (Ed.)
    Abstract Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of: i) the mesoscale and boundary layer flow, and ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3-5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1-3-km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment. 
    more » « less
  3. null (Ed.)
    Abstract The Flexible Array of Radars and Mesonets (FARM) Facility is an extensive mobile/quickly-deployable (MQD) multiple-Doppler radar and in-situ instrumentation network. The FARM includes four radars: two 3-cm dual-polarization, dual-frequency (DPDF), Doppler On Wheels DOW6/DOW7, the Rapid-Scan DOW (RSDOW), and a quickly-deployable (QD) DPDF 5-cm COW C-band On Wheels (COW). The FARM includes 3 mobile mesonet (MM) vehicles with 3.5-m masts, an array of rugged QD weather stations (PODNET), QD weather stations deployed on infrastructure such as light/power poles (POLENET), four disdrometers, six MQD upper air sounding systems and a Mobile Operations and Repair Center (MORC). The FARM serves a wide variety of research/educational uses. Components have deployed to >30 projects during 1995-2020 in the USA, Europe, and South America, obtaining pioneering observations of a myriad of small spatial and temporal scale phenomena including tornadoes, hurricanes, lake-effect snow storms, aircraft-affecting turbulence, convection initiation, microbursts, intense precipitation, boundary-layer structures and evolution, airborne hazardous substances, coastal storms, wildfires and wildfire suppression efforts, weather modification effects, and mountain/alpine winds and precipitation. The radars and other FARM systems support innovative educational efforts, deploying >40 times to universities/colleges, providing hands-on access to cutting-edge instrumentation for their students. The FARM provides integrated multiple radar, mesonet, sounding, and related capabilities enabling diverse and robust coordinated sampling of three-dimensional vector winds, precipitation, and thermodynamics increasingly central to a wide range of mesoscale research. Planned innovations include S-band On Wheels NETwork (SOWNET) and Bistatic Adaptable Radar Network (BARN), offering more qualitative improvements to the field project observational paradigm, providing broad, flexible, and inexpensive 10-cm radar coverage and vector windfield measurements. 
    more » « less
  4. Rationale: Calcium transient analysis is central to understanding inherited and acquired cardiac physiology and disease. Although the development of novel calcium reporters enables assays of CRISPR/Cas-9 genome-edited induced pluripotent stem cell–derived cardiomyocytes and primary adult cardiomyocytes, existing calcium-detection technologies are often proprietary and require specialist equipment, whereas open-source workflows necessitate considerable user expertise and manual input. Objective: We aimed to develop an easy to use open-source, adaptable, and automated analysis pipeline for measuring cellular calcium transients, from image stack to data output, inclusive of cellular identification, background subtraction, photobleaching correction, calcium transient averaging, calcium transient fitting, data collation, and aberrant behavior recognition. Methods and Results: We developed CalTrack, a MatLab-based algorithm, to monitor fluorescent calcium transients in living cardiomyocytes, including isolated single cells or those contained in 3-dimensional tissues or organoids, and to analyze data acquired using photomultiplier tubes or employing line scans. CalTrack uses masks to segment cells allowing multiple cardiomyocyte transients to be measured from a single field of view. After automatically correcting for photobleaching, CalTrack averages and fits a string of transients and provides parameters that measure time to peak, time of decay, tau, peak fluorescence/baseline fluorescence (F max /F 0 ), and others. We demonstrate the utility of CalTrack in primary and induced pluripotent stem cell–derived cell lines in response to pharmacological compounds and in phenotyping cells carrying hypertrophic cardiomyopathy variants. Conclusions: CalTrack, an open-source tool that runs on a local computer, provides automated high-throughput analysis of calcium transients in response to development, genetic or pharmacological manipulations, and pathological conditions. We expect that CalTrack analyses will accelerate insights into physiological and abnormal calcium homeostasis that influence diverse aspects of cardiomyocyte biology. 
    more » « less
  5. This paper presents the first detailed geologic map of in situ lower ocean crust; the product of six surveys of Atlantis Bank on the SW Indian Ridge. This combined with major and trace element compositions of primary magmatic phases in 99 seafloor gabbros shows there are both significant vertical and ridge-parallel variations in crustal composition and thickness, but a continuity of the basic stratigraphy parallel to spreading. This stratigraphy is not that of magmatic sedimentation in a large crustal magma chamber. Instead, it is the product of dynamic accretion where the lower crust formed by episodic intrusion, large-scale upward migration of interstitial melt due to crystal mush compaction, and continuous tectonic extension accompanied by hyper- and sub-solidus, crystal-plastic deformation. Five crossings of the gabbro-peridotite contact along the transform wall show that massive mantle peridotite is intruded by cumulate residues of moderately to highly evolved magmas, few of which could be even close to equilibrium with a primary mantle magma. This contact then does not represent the crust-mantle boundary as envisaged in the ophiolite analog for ocean crust. The residues of the magmas parental to the shallow crust must also lie beneath the center of the complex. This, and the nearly complete absence of dunites in peridotites from the transform wall, shows that melt transport through the shallow lithosphere was largely restricted to the central region of the paleo-ridge segment. There is almost no evidence for a melt lens or high-level storage of primitive melt in the upper 1500 m of Atlantis Bank. Thus, the composition of associated mid-ocean ridge basalt appears largely controlled by fractional crystallization of primitive cumulates at depth, near or at the base of the crust, modified somewhat by melt-rock reaction during transport through the overlying cumulate pile to the seafloor. Inliers of the dike-gabbro transition show that the uppermost gabbros crystallized at depth and were then emplaced upward, as they cooled, into the zone of diking. ODP and IODP drilling along the center of the gabbro massif also found few primitive gabbros that could have been in equilibrium with the original overlying lavas. Evidence of large-scale upward, permeable transport of interstitial melt through the gabbros is ubiquitous. Thus, post-cumulus processes, including extensive reaction, dissolution, and re-precipitation within the cumulate pile have obscured nearly all evidence of earlier primitive origins. We suggest that many of the gabbros may have started as primitive cumulates but were hybridized and transformed by later, migrating melts to evolved compositions, even as they ascended to higher levels, while new primitive cumulates were emplaced near the base of the crust. Mass balance for a likely parental melt intruded from the mantle to form the crust, however, requires that such primitive cumulates must exist at depth beneath Atlantis Bank at the center of the magmatic complex. The Atlantis Bank Gabbro Massif accreted by direct magma intrusion into the lower crust, followed by upward diapiric flow, first as a crystal mush, then by solid-state, crystal-plastic deformation, and finally by detachment faulting to the sea floor. The strongly asymmetric spreading to the south, parallel to the transform, was due to fault capture, with the bounding faults on the northern rift valley wall cut off by the detachment fault, which extended across the zone of intrusion causing rapid migration of the plate boundary to the north. 
    more » « less
  6. Abstract On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain. 
    more » « less